AN IMPROVED HYBRID TIME-FREQUENCY ALGORITHM FOR TIME-SCALE MODIFICATION OF SPEECH/AUDIO SIGNALS

Cristian NEGRESCU, Amelia CIOBANU, Dragoș BURILEANU, Dumitru STANOMIR

Time-Scale Modification
Basic approaches

• Time domain
 – Eg. SOLA (Synchronized Overlap-Add) family
 – Simple, efficient, good results for correlated signals

• Hybrid approach – Eg. The algorithm in the present paper

• Frequency domain
 – Eg. Phase vocoder, Sinusoidal Model
 – Good results for signals with complex spectral composition
Classical SOLA approach (for $\alpha<1$)

Classical SOLA approach for $\alpha<1$

- “Infamous” overlap-add:
 - Good results only for single pitch correlated signals
 - Frequency and phase discontinuities are preserved
 - Unnatural attenuation / amplification of some spectral components
 - The signal becomes dull
 - Generates beating effects
 - The sound becomes “rough”

Solution?
- Preserving segmentation, synchronization and concatenation
- Replacing OLA with a spectral smoothing procedure

The proposed hybrid algorithm

Frequency domain smoothing

Segmentation

Segment Alignment & Concatenation

Frame Selection

SM Analysis via IF

SM Synthesis

IF Attractors

Matching & Track Generation

Replacement

ω, A, ϕ

Time-scaled signal
The Signal’s Model

- **Traditional approach**
 - Sinusoidal Model (SM) based on STFT analysis.
 \[
 \hat{s}(n) = \sum_{p=1}^{P} s_p(n) = \sum_{p=1}^{P} A_p(n) \cos \theta_p(n), \quad n = 0, 1, \ldots, N_{sys}-1
 \]
 - Synthesis requires \(P \) controlled harmonic oscillators
 - **Control functions:**
 - Instantaneous amplitudes \(A_p(n) \)
 - Instantaneous phases \(\theta_p(n) = \omega_p(n) + \theta_p(0) \)
 - Smooth transitions requires interpolation (Quatieri/McCauley):
 - Amplitudes: linear interpolation based on \(A_p(0), A_p(N_{sys}) \)
 - Phases: constrained cubic polynomial interpolation based on \(\phi_p(0), \phi_p(N_{sys}) \)

- Traditional SM Analysis:
 - STFT decomposition
 - Peak picking
 - Track generation
Proposed approach for spectral smoothing

- **Traditional approach**
 - Sinusoidal Model (SM) based on STFT analysis.

- **Proposed algorithm**
 - Sinusoidal Model (SM) based on Instantaneous Frequency (IF) attractors.

- **Pros**
 - Improved accuracy in partial’s instantaneous frequency estimation
 - non-uniform frequencies grid
 - avoiding numerical computing of the derivative
 - Reducing the number of partials avoiding spurious local maxima introduced by analysis window

SM Analysis Using IF

- **SM model for the analog speech/audio signal**
 \[
 s(t) = \sum_{p=1}^{P} s_p(t) = A_p(t) \cos(\theta_p(t)) \left[\sigma(t-t_{sp}) - \sigma(t-t_{ep}) \right]
 \]

- **Instantaneous frequency is defined as**
 \[
 \omega_p(t) = \frac{d}{dt} \theta_p(t) \Rightarrow \theta_p(t) = \int_{t_{sp}}^{t} \omega_p(\tau) \, d\tau + \phi_p
 \]

- **Task:** How can be estimated \(A_p(t), \omega_p(t), \phi_p \) from the shape of the corresponding \(s_p(t) \) given on a sample by sample basis?

- **A possible solution:**
 - build the analytical signal \(\tilde{s}_p(t) = s_p(t) + j \cdot H\{s_p(t)\} \)
 - extract the parameters
 \[
 A_p(t) = |\tilde{s}_p(t)|, \quad \omega_p(t) = \frac{d}{dt} \arg\{\tilde{s}_p(t)\}, \quad \phi_p(t) = \arg\{\tilde{s}_p(t)\} \bigg|_{t=0}
 \]

- **Subsequent problem:** How to extract a single partial \(s_p(t) \) from the whole mixture \(s(t) \)?
SM Analysis Using IF

- SM model for the analog speech/audio signal
 \[s(t) = \sum_{p=1}^{P} s_p(t), \quad s_p(t) = A_p(t) \cos \left(\int \omega_p(\tau) d\tau + \phi_p \right), \quad t \in [t_{sp}, t_{ep}] \]

- Assumption: isolated partials

- SM Analysis using IF: - Band-pass filtering to extract \(s_p(t) \) from \(s(t) \)
 - Computing the analytical signal \(\tilde{s}_p(t) = s_p(t) + j \cdot H\{s_p(t)\} \)
 - Parameters extraction
 \[
 \omega_p(t) = \frac{d}{dt} \arg \{\tilde{s}_p(t)\} = \frac{d}{dt} \arctan \frac{\text{Im}\{\tilde{s}_p(t)\}}{\text{Re}\{\tilde{s}_p(t)\}}
 \]
 \[
 A_p(t) = |\tilde{s}_p(t)|, \quad \phi_p = \arg \{\tilde{s}_p(t)\}\bigg|_{t=0}
 \]

- Solution – Fixed BP filters with complete coverage
 - A bank of uniformly spaced bank of complex BP filters covers entire spectral domain
 - The bank is built by modulation of a causal and real LP prototype \(w(t) \)
 - Efficient implementation is performed via STFT analysis
SM Analysis Using IF

– Filtering stage –

• Goals
 – implementing a bank of equally-spaced BP filters to extract partials
 – computing the analytical $\tilde{s}_n(t)$ signals associated to the partials
• STFT is performed applying Fourier transform to the windowed signal
 $$S(\omega, \tau) = \int_{-\infty}^{\infty} s(t) w(\tau - t) e^{-j\omega t} dt, \quad \int_{-\infty}^{\infty} w^2(t) dt = 1$$

• For a fixed frequency, Ω_n, and considering time as a variable STFT is represented in terms of linear filtering
 $$S(\Omega_n, t) = \left[s(t) e^{-j\Omega_n t} \right] * w(t)$$

• We build an additional signal
 $$s_{f, \Omega_n}(t) = S(\Omega_n, t) e^{j\Omega_n t}$$

 • The output signal is an analytical signal!

• If a partial falls inside the bandwidth of the filter, the output is an estimator for the analytical signal associated to the respective partial!

SM Analysis Using IF

– IF computing –

• Goals
 – accurate estimation of IF
 – estimation of amplitudes and phases

 • Instantaneous frequency (IF) estimation
 $$\omega_n(t) = \frac{\dot{R}_{\Omega_n}(t) - R_{\Omega_n}(t) \dot{I}_{\Omega_n}(t)}{R_{\Omega_n}^2(t) + I_{\Omega_n}^2(t)}$$

 • Can we avoid time derivative of signals?
 $$\dot{s}_{f, \Omega_n}(t) = \frac{d}{dt} \left[S(\Omega_n, t) e^{j\Omega_n t} \right] = e^{j\Omega_n t} \dot{S}(\Omega_n, t) + j\Omega_n S(\Omega_n, t) e^{j\Omega_n t}$$

 $$\dot{S}(\Omega_n, t) = \frac{d}{dt} \left[s(t) e^{-j\Omega_n t} \right] * w(t) = \left[s(t) e^{-j\Omega_n t} \right] * \dot{w}(t)$$

 $$\ddot{A}_n(t) = \lim_{\Delta \omega \to 0} \frac{1}{2\pi} \int_{\omega_n(t)}^{\omega_n(t) + \Delta \omega} S(\omega, t) e^{j\omega t} d\omega \quad A_n(t) = |\ddot{A}_n(t)|$$

 $$\phi_n(t) = \text{arg}\{\ddot{A}_n(t)\}$$
SM Analysis Using IF
– IF computing –

Goals
- accurate estimation of IF
- estimation of amplitudes and phases

Remark: We intend to apply the process for discrete time
\[
\omega_n(t) = \frac{I_{\Omega_n}(t)R_{\Omega_n}(t) - R_{\Omega_n}(t)I_{\Omega_n}(t)}{R_{\Omega_n}^2(t) + I_{\Omega_n}^2(t)}
\]
\[
\hat{A}_n(t) = \lim_{\Delta \omega \to 0} \frac{1}{2\Delta \omega} \int_s(t) e^{i\omega \Delta \omega} d\omega
\]

Amplitude and phase will be computed by interpolation based on adjacent STFT bins.

IF Attractors

Goal
- Selecting the partials avoiding spurious spectral peaks

IF attractors are the frequencies that satisfy:
\[
\mu(\Omega_n, t) = 0 \quad \mu(\Omega_n, t) = \omega_n(t) - \Omega_n
\]
\[
\frac{\partial \mu(\Omega_n, t)}{\partial \Omega_n} = \frac{\partial \omega_n(t)}{\partial \Omega_n} - 1 < 0
\]

Algorithm for discrete frequencies:
- For all available frequencies, compute \(\mu(\Omega_n) \)
- Find zero crossing for \(\mu \), using linear interpolation
- Using finite differences, keep frequencies which satisfy the slope condition
Matching and Track Generation

Generate $L_p(i)$

$\hat{s}_{11,i}$

Frame Selection

Segment Alignment & Concatenation

SM Analysis via IF

Matching & Track Generation

Frequency domain smoothing

IF Attractors

SM Synthesis

Repeat

Hard limitation

Generated $L_q(i)$

$\hat{s}_{11,i}$

SM Analysis Using IF

– Software implementation –

Universitatea Politehnica Bucureşti

Universitatea Politehnica Bucureşti
Experimental Results
– Test signals –

- Sounds: 19 high quality monophonic signals
 - Recording: 44.1KHz, lin. PCM, 16b/smp
 - Downsample to 32, 16, 8kHz >> 76 signals
 - Playback: PC >> SPDIF int. >> Sony STRDB780(QS)>>Yamaha NS10M

- Signals
 - Pure speech, clean background, single speaker, m/f – (4)
 - Pure speech, clean background two speakers, m+f – (1)
 - Speech with noisy background, multiple speakers – (1)
 - Speech with musical background, single speaker, m – (1)
 - Singing voice, clean background m/f – (2)
 - Singing voice, musical background (instrumental), m/f, – (4)
 - Singing voice, complex background (instrumental + choir), m – (1)
 - Pure music (instrumental) – (4)

- Quality evaluators: 5 trained listeners

Experimental Results
– Comparison –

- The proposed algorithm is an improved version of KBS-TSM algorithm

<table>
<thead>
<tr>
<th>Score (CMOS)</th>
<th>Comparative Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Proposed method much better than KBS-TSM algorithm</td>
</tr>
<tr>
<td>2</td>
<td>Proposed method better than KBS-TSM algorithm</td>
</tr>
<tr>
<td>1</td>
<td>Proposed method slightly better than KBS-TSM algorithm</td>
</tr>
<tr>
<td>0</td>
<td>Proposed method equal to KBS-TSM algorithm</td>
</tr>
<tr>
<td>−1</td>
<td>Proposed method slightly worse than KBS-TSM algorithm</td>
</tr>
<tr>
<td>−2</td>
<td>Proposed method worse than KBS-TSM algorithm</td>
</tr>
<tr>
<td>−3</td>
<td>Proposed method much worse than KBS-TSM algorithm</td>
</tr>
</tbody>
</table>

- Improvements in the proposed algorithm:
 - T1: Improved version for correlation estimator, different frames (position, and correlation depth) for correlative matching an concatenation
 - T2: Different frame selection, decoupling (length, and position) of analysis and synthesis frames
 - T3: More refined spectral analysis based on IF instead of STFT
 - T4: Reducing the number of spurious peaks based on IF attractors

- Basic comparison idea:
 - For each scenario, the corresponding block from the proposed algorithm is replaced with the respective one from the KBS-TSM algorithm
Experimental Results
– Conclusions –

• The paper follows the trend of merging aspects of time domain with improved spectral analysis/synthesis methods

• We proposed a new algorithm which offers partial remedies of deficiencies met at the KBS-TSM algorithm:
 • Careful construction of the analysis frames used in correlative concatenation stage
 • More suitable correlation estimator
 • The entire timbre morphing procedure is revised
 • Using IF spectrogram we refined the spectral analysis and we perform a more accurate estimation of the limit conditions for the frequencies, amplitude and phases of the partials required by the SM model
 • The smearing artifacts were keep under control by reducing the length of the synthesis frame without sacrificing the spectral resolution due to the decoupling the analysis and the synthesis frames.
 • The efficiency of the solutions was confirmed by the results of the comparative listening tests.
 • The quality improvement offered by the proposed algorithm is significant for those TSM ratio where KBS-TSM algorithm is known not to operate properly.
 • In addition, we used IF attractors as an alternative for the common peak extraction routine. This allows us to decrease the arithmetic complexity by reducing the number of partials involved in SM synthesis.

• The proposed algorithm can be used to extend, with an acceptable implementation cost, the high quality operating range beyond the typical ±15% as it is for classical time domain algorithm